3.1.98 \(\int \frac {(a+a \sec (e+f x))^{3/2}}{(c-c \sec (e+f x))^{3/2}} \, dx\) [98]

Optimal. Leaf size=100 \[ -\frac {2 a^2 \tan (e+f x)}{f \sqrt {a+a \sec (e+f x)} (c-c \sec (e+f x))^{3/2}}+\frac {a^2 \log (1-\cos (e+f x)) \tan (e+f x)}{c f \sqrt {a+a \sec (e+f x)} \sqrt {c-c \sec (e+f x)}} \]

[Out]

-2*a^2*tan(f*x+e)/f/(c-c*sec(f*x+e))^(3/2)/(a+a*sec(f*x+e))^(1/2)+a^2*ln(1-cos(f*x+e))*tan(f*x+e)/c/f/(a+a*sec
(f*x+e))^(1/2)/(c-c*sec(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 100, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {3993, 3996, 31} \begin {gather*} \frac {a^2 \tan (e+f x) \log (1-\cos (e+f x))}{c f \sqrt {a \sec (e+f x)+a} \sqrt {c-c \sec (e+f x)}}-\frac {2 a^2 \tan (e+f x)}{f \sqrt {a \sec (e+f x)+a} (c-c \sec (e+f x))^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[e + f*x])^(3/2)/(c - c*Sec[e + f*x])^(3/2),x]

[Out]

(-2*a^2*Tan[e + f*x])/(f*Sqrt[a + a*Sec[e + f*x]]*(c - c*Sec[e + f*x])^(3/2)) + (a^2*Log[1 - Cos[e + f*x]]*Tan
[e + f*x])/(c*f*Sqrt[a + a*Sec[e + f*x]]*Sqrt[c - c*Sec[e + f*x]])

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 3993

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(3/2)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.), x_Symbol] :> Si
mp[-4*a^2*Cot[e + f*x]*((c + d*Csc[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Csc[e + f*x]])), x] + Dist[a/c, Int[Sqr
t[a + b*Csc[e + f*x]]*(c + d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0
] && EqQ[a^2 - b^2, 0] && LtQ[n, -2^(-1)]

Rule 3996

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_), x_Symbol] :> Dist
[(-a)*c*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x]])), Subst[Int[(b + a*x)^(m - 1/2)*((
d + c*x)^(n - 1/2)/x^(m + n)), x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] &
& EqQ[a^2 - b^2, 0] && IntegerQ[m - 1/2] && EqQ[m + n, 0]

Rubi steps

\begin {align*} \int \frac {(a+a \sec (e+f x))^{3/2}}{(c-c \sec (e+f x))^{3/2}} \, dx &=-\frac {2 a^2 \tan (e+f x)}{f \sqrt {a+a \sec (e+f x)} (c-c \sec (e+f x))^{3/2}}+\frac {a \int \frac {\sqrt {a+a \sec (e+f x)}}{\sqrt {c-c \sec (e+f x)}} \, dx}{c}\\ &=-\frac {2 a^2 \tan (e+f x)}{f \sqrt {a+a \sec (e+f x)} (c-c \sec (e+f x))^{3/2}}+\frac {\left (a^2 \tan (e+f x)\right ) \text {Subst}\left (\int \frac {1}{-c+c x} \, dx,x,\cos (e+f x)\right )}{f \sqrt {a+a \sec (e+f x)} \sqrt {c-c \sec (e+f x)}}\\ &=-\frac {2 a^2 \tan (e+f x)}{f \sqrt {a+a \sec (e+f x)} (c-c \sec (e+f x))^{3/2}}+\frac {a^2 \log (1-\cos (e+f x)) \tan (e+f x)}{c f \sqrt {a+a \sec (e+f x)} \sqrt {c-c \sec (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 0.73, size = 115, normalized size = 1.15 \begin {gather*} \frac {a \left (-2+i f x-2 \log \left (1-e^{i (e+f x)}\right )+\cos (e+f x) \left (-i f x+2 \log \left (1-e^{i (e+f x)}\right )\right )\right ) \sqrt {a (1+\sec (e+f x))} \tan \left (\frac {1}{2} (e+f x)\right )}{c f (-1+\cos (e+f x)) \sqrt {c-c \sec (e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sec[e + f*x])^(3/2)/(c - c*Sec[e + f*x])^(3/2),x]

[Out]

(a*(-2 + I*f*x - 2*Log[1 - E^(I*(e + f*x))] + Cos[e + f*x]*((-I)*f*x + 2*Log[1 - E^(I*(e + f*x))]))*Sqrt[a*(1
+ Sec[e + f*x])]*Tan[(e + f*x)/2])/(c*f*(-1 + Cos[e + f*x])*Sqrt[c - c*Sec[e + f*x]])

________________________________________________________________________________________

Maple [A]
time = 0.23, size = 161, normalized size = 1.61

method result size
default \(\frac {\left (-1+\cos \left (f x +e \right )\right ) \left (\cos \left (f x +e \right ) \ln \left (\frac {2}{\cos \left (f x +e \right )+1}\right )-2 \cos \left (f x +e \right ) \ln \left (-\frac {-1+\cos \left (f x +e \right )}{\sin \left (f x +e \right )}\right )-\ln \left (\frac {2}{\cos \left (f x +e \right )+1}\right )+\cos \left (f x +e \right )+2 \ln \left (-\frac {-1+\cos \left (f x +e \right )}{\sin \left (f x +e \right )}\right )+1\right ) \sqrt {\frac {a \left (\cos \left (f x +e \right )+1\right )}{\cos \left (f x +e \right )}}\, a}{f \cos \left (f x +e \right ) \left (\frac {c \left (-1+\cos \left (f x +e \right )\right )}{\cos \left (f x +e \right )}\right )^{\frac {3}{2}} \sin \left (f x +e \right )}\) \(161\)
risch \(\frac {a \sqrt {\frac {a \left ({\mathrm e}^{i \left (f x +e \right )}+1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, \left ({\mathrm e}^{i \left (f x +e \right )}-1\right ) x}{c \left ({\mathrm e}^{i \left (f x +e \right )}+1\right ) \sqrt {\frac {c \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}}-\frac {2 a \sqrt {\frac {a \left ({\mathrm e}^{i \left (f x +e \right )}+1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, \left ({\mathrm e}^{i \left (f x +e \right )}-1\right ) \left (f x +e \right )}{c \left ({\mathrm e}^{i \left (f x +e \right )}+1\right ) \sqrt {\frac {c \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, f}+\frac {4 i a \sqrt {\frac {a \left ({\mathrm e}^{i \left (f x +e \right )}+1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, {\mathrm e}^{i \left (f x +e \right )}}{c \left ({\mathrm e}^{i \left (f x +e \right )}+1\right ) \left ({\mathrm e}^{i \left (f x +e \right )}-1\right ) \sqrt {\frac {c \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, f}-\frac {2 i a \sqrt {\frac {a \left ({\mathrm e}^{i \left (f x +e \right )}+1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, \left ({\mathrm e}^{i \left (f x +e \right )}-1\right ) \ln \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )}{c \left ({\mathrm e}^{i \left (f x +e \right )}+1\right ) \sqrt {\frac {c \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, f}\) \(401\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(f*x+e))^(3/2)/(c-c*sec(f*x+e))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/f*(-1+cos(f*x+e))*(cos(f*x+e)*ln(2/(cos(f*x+e)+1))-2*cos(f*x+e)*ln(-(-1+cos(f*x+e))/sin(f*x+e))-ln(2/(cos(f*
x+e)+1))+cos(f*x+e)+2*ln(-(-1+cos(f*x+e))/sin(f*x+e))+1)*(a*(cos(f*x+e)+1)/cos(f*x+e))^(1/2)/cos(f*x+e)/(c*(-1
+cos(f*x+e))/cos(f*x+e))^(3/2)/sin(f*x+e)*a

________________________________________________________________________________________

Maxima [A]
time = 0.53, size = 101, normalized size = 1.01 \begin {gather*} \frac {\frac {2 \, \sqrt {-a} a \log \left (\frac {\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1}\right )}{c^{\frac {3}{2}}} - \frac {\sqrt {-a} a \log \left (\frac {\sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 1\right )}{c^{\frac {3}{2}}} + \frac {\sqrt {-a} a {\left (\cos \left (f x + e\right ) + 1\right )}^{2}}{c^{\frac {3}{2}} \sin \left (f x + e\right )^{2}}}{f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))^(3/2)/(c-c*sec(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

(2*sqrt(-a)*a*log(sin(f*x + e)/(cos(f*x + e) + 1))/c^(3/2) - sqrt(-a)*a*log(sin(f*x + e)^2/(cos(f*x + e) + 1)^
2 + 1)/c^(3/2) + sqrt(-a)*a*(cos(f*x + e) + 1)^2/(c^(3/2)*sin(f*x + e)^2))/f

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))^(3/2)/(c-c*sec(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

integral((a*sec(f*x + e) + a)^(3/2)*sqrt(-c*sec(f*x + e) + c)/(c^2*sec(f*x + e)^2 - 2*c^2*sec(f*x + e) + c^2),
 x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a \left (\sec {\left (e + f x \right )} + 1\right )\right )^{\frac {3}{2}}}{\left (- c \left (\sec {\left (e + f x \right )} - 1\right )\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))**(3/2)/(c-c*sec(f*x+e))**(3/2),x)

[Out]

Integral((a*(sec(e + f*x) + 1))**(3/2)/(-c*(sec(e + f*x) - 1))**(3/2), x)

________________________________________________________________________________________

Giac [A]
time = 1.68, size = 120, normalized size = 1.20 \begin {gather*} -\frac {\frac {\sqrt {-a c} a^{2} \log \left ({\left | a \right |} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2}\right )}{c^{2} {\left | a \right |}} - \frac {\sqrt {-a c} a^{2} \log \left ({\left | -a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - a \right |}\right )}{c^{2} {\left | a \right |}} - \frac {{\left (a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - a\right )} \sqrt {-a c} a}{c^{2} {\left | a \right |} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2}}}{f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))^(3/2)/(c-c*sec(f*x+e))^(3/2),x, algorithm="giac")

[Out]

-(sqrt(-a*c)*a^2*log(abs(a)*tan(1/2*f*x + 1/2*e)^2)/(c^2*abs(a)) - sqrt(-a*c)*a^2*log(abs(-a*tan(1/2*f*x + 1/2
*e)^2 - a))/(c^2*abs(a)) - (a*tan(1/2*f*x + 1/2*e)^2 - a)*sqrt(-a*c)*a/(c^2*abs(a)*tan(1/2*f*x + 1/2*e)^2))/f

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (a+\frac {a}{\cos \left (e+f\,x\right )}\right )}^{3/2}}{{\left (c-\frac {c}{\cos \left (e+f\,x\right )}\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a/cos(e + f*x))^(3/2)/(c - c/cos(e + f*x))^(3/2),x)

[Out]

int((a + a/cos(e + f*x))^(3/2)/(c - c/cos(e + f*x))^(3/2), x)

________________________________________________________________________________________